
SELF-DEFENSELESS

BÁLINT VARGA-PERKE 2019.06.22

EUSKALHACK IV

WHOAMI

• Silent Signal co-founder
• Penetration testing

• Custom training

• Consulting

• @buherator
• Top Hungarian IT-sec resource for some time…

• Moved to polluting the tubes via Twitter

BACKGROUND

• Some hits

• Aruba wIPS

• Panda cloud infrastructure

• Bitdefender

• Symantec Critical System Protection

• Trend Micro Office Scan

• McAfee crapware

• All logic bugs

• Tried fuzzing too

• Not really my game…

PREVIOUS RESEARCH

ABUSING PRIVILEGED FILE ACCESS IN ANTIVIRUS SOFTWARE

• Parallel research with Florian Bogner and Clement Lavoillotte
• AVGater

• Abusing Privileged File Manipulation

• LPE in multiple endpoint security products
• Bitdefender, Kaspersky, Symantec, …

• My approach: Self-defense bypass
• Bare-Knuckled Anti-Virus Breaking

• Primary idea: COM hijacking

https://bogner.sh/2017/11/avgater-getting-local-admin-by-abusing-the-anti-virus-quarantine/
https://offsec.provadys.com/intro-to-file-operation-abuse-on-Windows.html
https://blog.silentsignal.eu/2018/01/08/bare-knuckled-antivirus-breaking/
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html

HYPOTHESIS

Self-defense hides exploitable attack surface.

ARCHITECTURE

AV Kernel Module

AV UI AV Service

U
se

r

SY
ST

EM

ARCHITECTURE

AV Kernel Module

AV UI AV Service

U
se

r

SY
ST

EM

SELF-DEFENSE

IS SELF-DEFENSE A SECURITY BOUNDARY?

• Symantec
• CVE-2017-6331

• Avast
• CVE-2017-8307

• CVE-2017-8308

• Kaspersky
• Bypass from 2007:

„Kaspersky Lab does not consider this to be a vulnerability: it is not an error in
our code, but an obscure method for manipulating standard Windows routines
to circumvent our self-defense mechanisms.”

https://2600index.info/Links/25/2/rootkit.com/newsread.php?newsid=778.html

KASPERSKY

• No political agenda here…

• Self-defense bypass != vulnerability
• My original bypass still works

• Some experience from previous research
• Well-known components

• Configurability

• Only AV that caught my previous exploits while they
were 0-day :P
• I found bypasses ofc. ;)

• Research target: KFA
• Was released around the time my research began

• Reusable components (KIS, KES, Secure Connection…)

PRIOR WORK

2008 SOURCE LEAK

• Kaspersky source code appeared on
the Internet in 2011
• Leaked by former employee
• KASPERSKY.AV.2008.SRCS.ELCRABE.RAR

• Source code was from 2008

• I did not use it of course
• That would be illegal…
• "It also contains fragments of an obsolete

version of the Kaspersky anti-virus engine,
which has been radically redesigned and
updated since the source code was stolen"

ANTIVIRUS DEBUGGING

• Use VM's
• Preferably with a good API for snapshot-revert

• Airgap
• Unwanted updates

• Unwanted leaks

• More deterministic

• Script everything
• Everything is slow, speed up where we can

• pykd rocks!

ANTIVIRUS DEBUGGING

• You may be allowed to disable self-
defense
• Kaspersky has an option for this

• User-mode sometimes works
• Snapshot!

• Use a Kernel Debugger like proper adults!
• Need to switch to user process context - slow!

• Control the user debugger from KD (thx guys!)
• Much faster (over COM port!)

avp_info=pykd.dbgCommand("!process 0 0 avp.exe")
avp_eprocess=avp_info.split(" ")[1]
pykd.dbgCommand(".process -r -i -p %s; " % avp_eprocess)

ntsd -d -p <PID>

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-csrss
https://twitter.com/richinseattle/status/1125504974644031490

ANTIVIRUS DEBUGGING

AV Kernel Module

AV UI AV Service

U
se

r

SY
ST

EM

DIA CÍME

REVERSE ENGINEERING

KASPERSKY

• 32-bit application
• WOW64 is hard, use a 32-bit OS for

testing

• __fastcall calling convention
• First two params in ECX and EDX,

rest on stack
• Many RE tools can't handle this…

• “Real-life” complexity
• Module sizes in order of MBs
• Structures/exports imitating OO design
• Wide set of x86 instructions

(killing RE tools)

KASPERSKY

TARGET: IPC COMPONENT

• PRRemote.DLL
• + PRCore.DLL
• "Prague"

• Common IPC interface among multiple
products
• KFA, KES, Secure Connection, etc.

• Today's agenda:
High level message processing (~ OSI Layer 5)
• Needed for upper layer analysis
• Tip of the iceberg

COMMUNICATION

PRREMOTE.DLL

• Implements RPC functionality

• Functionality for both client and server

• Debug strings
• … the reverser's best friends

• Non-trivial debug print mechanism ->

"Hijacking debug output:
1) allocate new memory buffer ($dump)
2) [$dump] <- pointer referencing the beginning of

data inside the buffer
3) [$dump]+0x10 Size of data DWORD, data starts at 0x18
4) err_logger expects dst buffer in ECX, so put $dump

there when the function starts
5) Log information put inside $dummy when err_logger

exits. Size of data is at $dump+8
6) Enable err_logger by placing $dummy to the stack of

is_Debug every time it's called

Still crashes sometimes (on DB update attempts?)..."
- My notes, verbatim

(I definitely should write better notes)

PRREMOTE.DLL
$ strings prremote.dll | fgrep rpc_
rmt rpc_send_receive_server exception
rmt rpc_send_receive_server failed,
rmt rpc_send_receive_server2 called, connection
rmt rpc_send_receive_server2 exception during method call
rmt rpc_send_receive_server3: failed to parse packet (size=
rmt rpc_send_receive_server3 unknown call type:
rmt rpc_invoke3 unknown call type:
rmt rpc_invoke3 not enough memory to store returned data:
rmt rpc_init_context_handle failed, RpcStatus is
rmt rpc_send_receive2 failed, RpcStatus is
rmt rpc_send_receive2: not enough memory to store received data:
rmt rpc_send_receive2 call failed, RpcStatus is
rmt rpc_send_receive3 failed, RpcStatus is
rmt rpc_send_receive3: not enough memory to store received data:
rmt rpc_send_receive3 call failed, RpcStatus is
rmt rpc_disconnect_from_server exit

PRREMOTE.DLL

• 3 versions of rpc_send_receive_server*()
• Older versions still present

• Regular breaks on rpc_send_receive_server3()

• Call stack shows one previous call in the module
• I called it my_rpc_message_handler()

• Deeper frames are from RPCRT4: built-in Windows RPC

PRREMOTE.DLL

my_rpc_message_handler()

• Called from RPCRT4

• Single argument, correctly identified as RPC_MESSAGE*
by IDA
• Windows RPC is merely a transport layer

• Internal structure: "The RPC_MESSAGE structure contains
information shared between NDR and the rest of the RPC or OLE
runtime."

• Basic sanity check

• rpc_message->Buffer passed as argument to
rpc_send_receive_server3()

SENDING MESSAGES

• PythonForWindows

• Endpoint: PRRemote:<AVP PID>

• Interface:
806411e0-2ed2-194f-bb8c-e27194948ac1

• Method: 4
• What are the others for?

client = windows.rpc.RPCClient(r"\RPC Control\PRRemote:%d" % int(avp_pid))
iid = client.bind("806411e0-2ed2-194f-bb8c-e27194948ac1")
ndr_params = ndr.make_parameters([ndr.NdrLong]*len(pkt))
resp = client.call(iid, 4, ndr_params.pack(pkt))

https://github.com/hakril/PythonForWindows

PRREMOTE.DLL

MESSAGE BUFFER

• Recognizable header

• Readable strings
• UTF-16

rpc_send_receive_server3()

• Top-level message dispatcher

• Interesting strings:
• "rmt\tReceived message has wrong

integrity code"
• "rmt\tNo session found for ID"

00000000 00000000 00000000 00000000
01013200 SMALLINT

my_rpc_header_size_check()

• len_in: WORD @ 0x12

• len_out: DWORD @ 0x14

• len_in + len_out < rpc_msg->Size

• LangSec ppl love this ;)

MESSAGE STRUCTURE
struct KASPY_IPC_REVERSED {

DWORD zero0

DWORD zero4

DWORD zero8

DWORD zeroC

WORD doubleOne

WORD len_out

DWORD len_in

};

MESSAGE STRUCTURE
struct KASPY_IPC_REVERSED {

DWORD zero0

DWORD zero4

DWORD zero8

DWORD zeroC

WORD doubleOne

WORD len_out

DWORD len_in

DWORD session0

DWORD session1

};

• Trace with x64dbg and Lighthouse

• Debug: "No session found for ID"

• Need a correct 64-bit value for parsing to happen
• QWORD @ 0x18
• You don’t brute-force 64-bits, even locally

• Except on first connect
• SID = 0
• Authorization2() runs

• In practice:
• sess0 = 0xFFFA783B (slowly grows on service

respawn)
• sess1 < 0x10000 (random DWORD on respawn)
• Brute-force is totally practical!
• Lack of boot-time entropy?

https://gist.github.com/v-p-b/238d2e3bfa6671904f7e416e8a8ca562

MESSAGE STRUCTURE
struct KASPY_IPC_REVERSED {

DWORD zero0

DWORD zero4

DWORD zero8

DWORD zeroC

WORD doubleOne

WORD len_out

DWORD len_in

DWORD session0

DWORD session1

WORD unk

DWORD hash0

DWORD hash1

};

• Debug: "Received message has wrong integrity code"

• Based on Flower-Noll-Vo (FNV) hash
• Widely used algorithm, e.g. in spam filters

• Not a cryptographic hash

• FNV offset basis constant is present

• Modified version, but primitives can be identified

• Created standalone implementation with ripr
• Static code from Binary Ninja + Unicorn Engine

• 64-bits random looking prefix makes this a MAC 
• Set by the client in payload upon first connect (SID=0,

key=0)

http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-source
https://github.com/pbiernat/ripr

MESSAGE STRUCTURE
• 0x101 -> protocol version

• Header parser behavior depends on this value

• 0x100 - 0x101

• Timestamp

• Length == 0x32

struct KASPY_IPC_REVERSED {

DWORD zero0

DWORD zero4

DWORD zero8

DWORD zeroC

WORD version

WORD len_out

DWORD len_in

DWORD session0

DWORD session1

WORD unk

DWORD hash0

DWORD hash1

DWORD time0

DWORD time1

};

MESSAGE CHECKS

• Four DWORD's are needed to accept the message for
further parsing
• 2 DWORD's as "session"

• 2 DWORD's as "integrity key"

• Current IDs/keys are stored in global structures in both
the high priv. (avp.exe) and low priv. (avpui.exe)
processes
• With self-defense bypass the secrets can be obtained

• Other options:
• Brute-force

• Pre-auth messages

• ???

DIA CÍME

BUGS

CODE REVIEW

• Remember that length check?

• It goes like this:

my_rpc_header_size_check()

• len_in: WORD @ 0x12

• len_out: DWORD @ 0x14

• len_in + len_out < rpc_msg->Size

MOVZX EDX,word ptr [ECX + 0x16] ; len_out
...
MOV EAX,dword ptr [ECX + 0x18] ; len_in
ADD EAX,EDX
CMP dword ptr [EBP + size],EAX

• Pre-auth integer overflow

• I don't think it's exploitable (nor I am a pro exploit dev)

• Still quite telling…

FUZZING

• <20 LoC fuzzer in Python

• Replay mutated packets captured at
rpc_send_receive_server3()

• Patched out session/integrity checks with debugger

• Pre+post auth crashes in minutes

„Any fuzzer at all, no matter how primitive, has a
better chance of finding a bug than an idle CPU core.” – Ben Nagy

FUZZING

Attacker controlled

FUZZING

CONTROLLED MEMCPY

• The memcpy() in use wasn't identified as a library
function

• memcpy() doesn't open a stack frame

• Caller has stack canary
• Leak through arbitrary sized FNV preimage?

• Destination is a stack array right before the canary

• Can we do anything interesting with full control over the
array?

PROCEDURE CALLS

PROCEDURE CALLS

• We are in the old rpc_send_receive_server() now!
• Called from rpc_send_receive_server3()

• So much for "radical redesign"…

• func_addr is chosen from different function pointer
tables

• User chooses the table

• User chooses the offset

• Offset is bounds checked

FUNCTION TABLES

• Can we control param1?

• Unlikely: Not present in the input stream
• First parameter is stored early in EDX in rpc_send_receive_server()
• Our memcpy() doesn't affect is
• Neither does any subsequent memory corruption

void f(int param_1,int param_2,int param_3,int param_4,int param_5,int param_6,int param_7)
{
if (param_2 == -0xf000) {
(**(code **)(*(int *)DWORD_100739a0 + 0x14))(0xffff1000,param_3,param_5);
return;

}
(**(code **)(*(int *)(param_1 + 4) + 0x124))

(param_1,param_2,param_3,param_4,param_5,param_6,param_7,0xffffffff);
return;

}

Typical function in the table:

FUNCTION TABLES

Are we happy, Vincent?

undefined4 __cdecl call_param2(undefined4 param_1,int param_2)
{
int iVar1;
iVar1 = (**(code **)(*(int *)(DWORD_10077ad4 + 4) + 0x58))(DWORD_10077ad4,param_2);
if (-1 < iVar1) {
(**(code **)(*(int *)(param_2 + 4) + 0x5c))(param_2);

}
return 0;

}

DIA CÍME

EXPLOITATION

EXPLOITATION

THE GOOD

• We are local…
• ASLR ineffective

• Arbitrary computation
(dynamic shellcode, ROP, etc.)

• AVP respawns

• Pokemon exception handling

THE BAD

• Stack canaries
• Thanks Tavis…

• DEP

• Losing session+keys at respawn

• Heap entropy still exists
• Randomizing things before it was cool…

https://bugs.chromium.org/p/project-zero/issues/detail?id=518#c1

EIP CONTROL

• 4th WORD after header holds flags
• Needs proper setting to reach the table based call

• Next DWORD is the table offset

• What on Earth is this?

undefined4 __cdecl call_param2(undefined4 param_1,int param_2)
{
int iVar1;
iVar1 = (**(code **)(*(int *)(DWORD_10077ad4 + 4) + 0x58))(DWORD_10077ad4,param_2);
if (-1 < iVar1) {
(**(code **)(*(int *)(param_2 + 4) + 0x5c))(param_2);

}
return 0;

}

EIP CONTROL

• Looks like a method call on a global object

• Implementation in PRCORE.DLL
• The real deal is reached after multiple calls

• my_struct_checker()

undefined4 __cdecl call_param2(undefined4 param_1,int param_2)
{
int iVar1;
iVar1 = (**(code **)(*(int *)(DWORD_10077ad4 + 4) + 0x58))(DWORD_10077ad4,param_2);
if (-1 < iVar1) {
(**(code **)(*(int *)(param_2 + 4) + 0x5c))(param_2);

}
return 0;

}

STRUCT CHECKER

uint my_struct_checker(int ptr,dword char_out)
{
uint ptr1;

ptr1 = -(uint)(ptr != 0) & ptr - 0x4cU;
if ((ptr1 != 0) && ((char)char_out != 0)) {
char_out = 0;
(*__ptr_check_param1)(ptr1 + 0x54, &char_out,4,0);
if ((char_out == 0) || (char_out != ptr1 + 0x58)) {
ptr1 = 0;

}
}
return ptr1;

}

STRUCT CHECKER

int my_check_param1(byte *ptr, byte *char_out, int ctr4)
{
int iVar1;
int *in_FS_OFFSET;
undefined local_14 [16];

iVar1 = *in_FS_OFFSET;
*(undefined **)in_FS_OFFSET = local_14;
while (ctr4 != 0) {
*char_out = *ptr;
ctr4 = ctr4 + -1;
char_out = char_out + 1;
ptr = ptr + 1;

}
*in_FS_OFFSET = iVar1;
return 0;

}

STRUCT CHECKER

• I used dynamic analysis + VM snapshots to keep
heap addresses constant
• If it works, it's not stupid!

• These functions get hit all the time
• Must single-step from rpc_send_receive_server()

• Struct checker performs basic sanity checks

• Param2 has to survive multiple dereferences
• Provide self-referencing pointers

STRUCT CHECKER

• Sent 20K packages with self-referencing pointers,
then the trigger packet
• Still based on predictable heap addresses + VM snapshots

• Checks passed -> EIP overwritten \o/

• EIP value read from an address after the checked
struct values -> Possible to control!

• How?

WE NEED TO SPRAY THE HEAP!

HEAP SPRAY

• Tests showed that packet sizes are limited (~2K)

• Parsed buffers are freed by my_rpc_msg_handler()

• Hooked HeapAlloc in IAT via KD
• Terribly slow…

• Physical page offsets?

• Patched PythonForWindows so it won't check sizes or
wait for replies
• Managed to spray my packets over a 78K, non-continuous

space :P

• Let's read up again on this ALPC thingy…

HEAP SPRAY

Alex Ionescu already did it!
(duh!)

http://www.alex-ionescu.com/publications/syscan/syscan2014.pdf

HEAP SPRAY

ALPC HEAP SPRAY

• ALPC allows passing large messages
via shared memory
• DataView's

• Unmapped after use (RPCRT4),
but can be arbitrary large!

• Virtual base addresses will differ
between client and server

• Offset inside allocation is known

STRATEGY

• Allocate 256M memory in our process

• Use the ALPC layer directly to send
RPC message
• PythonForWindows has example code

• Share the 256M mapping

• Brute-force base address in avp.exe
• Read access violations are handled :D

• 2-3 tries in practice

Spray

HEAP SPRAY
Trigger

Spray

Spray

Spray

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef

0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef

0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef

0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef

Landing zone

2
5

6
M

…

Spray

ROP CHAIN
Trigger

Spray

Spray

Spray

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ESI ->

ROP1: ESP<-ESI (+POPs); RET 10

Spray

ROP CHAIN
Trigger

Spray

Spray

Spray

SELFPTR SELFPTR SELFPTR SELFPTR

ROP2 SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ESI ->

ROP1: ESP<-ESI (+POPs); RET 10
ROP2: ESP += 0x18

Spray

ROP CHAIN
Trigger

Spray

Spray

Spray

SELFPTR SELFPTR SELFPTR SELFPTR

ROP2 SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR ROP3

WinExec ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ESI ->

ROP1: ESP<-ESI (+POPs); RET 10
ROP2: ESP += 0x18
ROP3: POP EBX

Spray

ROP CHAIN
Trigger

Spray

Spray

Spray

SELFPTR SELFPTR SELFPTR SELFPTR

ROP2 SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR ROP3

WinExec ROP4 Command ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ESI ->

ROP1: ESP<-ESI (+POPs); RET 10
ROP2: ESP += 0x18
ROP3: POP EBX
ROP4: POP EDI

Command is sprayed at every 0x10000

Spray

ROP CHAIN
Trigger

Spray

Spray

Spray

SELFPTR SELFPTR SELFPTR SELFPTR

ROP2 SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR ROP3

WinExec ROP4 Command ROP5

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ROP1 ROP1 ROP1 ROP1

ESI ->

ROP1: ESP<-ESI (+POPs); RET 10
ROP2: ESP += 0x18
ROP3: POP EBX
ROP4: POP EDI
ROP5: PUSH EBX; CALL EDI

Command is sprayed at every 0x10000

DIA CÍME

DEMO

DIA CÍME

OUTRO

COORDINATED DISCLOSURE?
If these are your priorities…

COORDINATED DISCLOSURE?
If these are your priorities…

COORDINATED DISCLOSURE?
If these are your priorities…

COORDINATED DISCLOSURE?
If these are your priorities…

COORDINATED DISCLOSURE?
If these are your priorities…

… you are not a charitable organization.

BUG BOUNTY?

• Research value > Bounty value

• Unrealistic scoping doesn't
encourage researchers
• Client-side exploits?

• Dependencies?

• Limited impact
• Local

• Needs self-defense bypass

• PoC to be released a bit later

https://twitter.com/taviso/status/971109426500268032

CONCLUSIONS

RESULTS

• Self-defence does hide exploitable
attack surface

• Self-defense bypasses are useful
• Attack from two ends

• Look into persistence, code injection
techniques

• Kaspersky IPC parsers are fragile

• Local exploits are easy, despite
mitigations

TIPS

• This is just the tip of the iceberg
• Other parses

• Other vendors!

• Neat ideas in other IPC research
(browsers)
• Gamozolabs, Ned Williamson+NiklasB,

etc.

• Fuzzing is a metal detector
• Interesting code > Unexploitable bugs

https://github.com/gamozolabs/adventures_in_fuzzing
https://www.youtube.com/watch?v=xzG0pLM4Q64
https://www.youtube.com/watch?v=MMxtKq8UgwE

THANK YOU!
BÁLINT VARGA-PERKE
BUHERATOR@SILENTSIGNAL.HU

@buherator

@SilentSignalHU

