BALINT VARGA-PERKE 2019.06.22

Silent Signal co-founder
Penetration testing
Custom training
Consulting

@buherator

Top Hungarian IT-sec resource for some time...
Moved to polluting the tubes via Twitter

0R16r)¢L MOTEON PICTURE .SHOMEND
5 ‘,/

Music

MARK ISHAM

Some hits
Aruba wiPS
Panda cloud infrastructure
Bitdefender
Symantec Critical System Protection
Trend Micro Office Scan
McAfee crapware
All logic bugs
Tried fuzzing too
Not really my game...

ABUSING PRIVILEGED FILE ACCESS IN ANTIVIRUS SOFTWARE

Parallel research with Florian Bogner and Clement Lavoillotte
AVGater
Abusing Privileged File Manipulation

LPE in multiple endpoint security products
Bitdefender, Kaspersky, Symantec, ...

My approach: Self-defense bypass
Bare-Knuckled Anti-Virus Breaking

Primary idea: COM hijacking

https://bogner.sh/2017/11/avgater-getting-local-admin-by-abusing-the-anti-virus-quarantine/
https://offsec.provadys.com/intro-to-file-operation-abuse-on-Windows.html
https://blog.silentsignal.eu/2018/01/08/bare-knuckled-antivirus-breaking/
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html

Self-defense hides exploitable attack surface.

INJ1LSAS

135

INJ1LSAS

135

IS SELF-DEFENSE A SECURITY BOUNDARY?

Symantec
CVE-2017-6331

Avast
CVE-2017-8307
CVE-2017-8308

Kaspersky

Bypass from 2007:

»~Kaspersky Lab does not consider this to be a vulnerability: it is not an error in
our code, but an obscure method for manipulating standard Windows routines
to circumvent our self-defense mechanisms.”

https://2600index.info/Links/25/2/rootkit.com/newsread.php?newsid=778.html

No political agenda here...

Self-defense bypass != vulnerability
My original bypass still works

Some experience from previous research

Well-known components

Configurability
Only AV that caught my previous exploits while they
were 0-day :P

| found bypasses ofc. ;)

Research target: KFA
Was released around the time my research began
Reusable components (KIS, KES, Secure Connection...)

2008 SOURCE LEAK

Kaspersky source code appeared on
the Internetin 2011

Leaked by former employee
KASPERSKY.AV.2008.SRCS.ELCRABE.RAR

Source code was from 2008

| did not use it of course
That would be illegal...

"It also contains fragments of an obsolete
version of the Kaspersky anti-virus engine,
which has been radically redesigned and
updated since the source code was stolen™

Use VM's
Preferably with a good API for snapshot-revert

Airgap
Unwanted updates
Unwanted leaks
More deterministic

Script everything
Everything is slow, speed up where we can
pykd rocks!

You may be allowed to disable self-
defense

Kaspersky has an option for this

User-mode sometimes works
Snapshot!

Use a Kernel Debugger like proper adults!
Need to switch to user process context - slow!
Control the user debugger from KD (thx guys!)

Much faster (over COM port!)

avp_info=pykd.dbgCommand("!process @ @ avp.exe")
avp_eprocess=avp_info.split(" ")[1]
pykd.dbgCommand(".process -r -i -p %s; " % avp_eprocess)

ntsd -d -p <PID>

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-csrss
https://twitter.com/richinseattle/status/1125504974644031490

INJ1LSAS

135

REVERSE ENGINEERING

32-bit application

WOW®64 is hard, use a 32-bit OS for
testing

__fastcall calling convention

First two params in ECX and EDX,
rest on stack

Many RE tools can't handle this...

“Real-life” complexity
Module sizes in order of MBs
Structures/exports imitating OO design

Wide set of x86 instructions
(killing RE tools)

TARGET: IPC COMPONENT

PRRemote.DLL
+ PRCore.DLL
"Prague"

Common IPC interface among multiple
products

KFA, KES, Secure Connection, etc.

Today's agenda:

High level message processing (~ OSI Layer 5)
Needed for upper layer analysis
Tip of the iceberg

Endpaints F X Procedures
Pid Protocol N
' rotoco! | Name Index Mame Address Format
816 ncalrpc PREMameService:816
816 ncalrpc PRRemote216
816 ncalrpc OLEGE30FABAITESSFID10194B10DE1G
Interfaces =
Pid Uuid : Ver Type Procs Stub Callback Mame Base Location
816 13a27bed-c73c-28ad-4b50-52524f424a55 28387.816 RPC O OecDDODD000Eee30000 C:hProgram Files\Kaspersky Lab\Kaspersky Free 18.0.04prremote.dll
816 18a27bed-d301-7233-4b50-525250524f50 28387.816 RPC 0 0x000000006e230000 C:\Program Files\Kaspersky Lab\Kaspersky Free 18.0.0\prremote.dll
816 18a27bed-e474-f035-4b50-525250524f50 28387.816 RPC 0O Ox000000006ee30000 C:\Program Files\Kaspersky Lab\Kaspersky Free 18.0.00prremote.dl|
816 18F70770-Bebd-11cf-9af1-0020afee72f4 0.0 RPC 35 Interpreted CecDDODDD00T 52k 000D CAWindows\System32vcombase.dll
816 206411e0-2ed2-194f- bb3c-e27194948ac] 1.0 RPC 5 OpaDO0DD000 T Ox0000000062e30000 C:\Program Files\Kaspersky Lab\Kaspersky Free 18.0.0\prremote.dll

Implements RPC functionality

Functionality for both client and server

Debug strings
... the reverser's best friends

Non-trivial debug print mechanism ->

"Hijacking debug output:

1) allocate new memory buffer ($dump)

2) [$dump] <- pointer referencing the beginning of
data inside the buffer

3) [$dump]+0x10 Size of data DWORD, data starts at ox18

4) err_logger expects dst buffer in ECX, so put $dump
there when the function starts

5) Log information put inside $dummy when err_logger
exits. Size of data is at $dump+8

6) Enable err_logger by placing $dummy to the stack of
is_Debug every time it's called

Still crashes sometimes (on DB update attempts?)..."
- My notes, verbatim
(I definitely should write better notes)

$ strings prremote.dll | fgrep rpc_

rmt rpc_send _receive_server exception

rmt rpc_send receive server failed,

rmt rpc_send receive server2 called, connection

rmt rpc_send receive server2 exception during method call

rmt rpc_send _receive server3: failed to parse packet (size=

rmt rpc_send receive_ server3 unknown call type:

rmt rpc_invoke3 unknown call type:

rmt rpc_invoke3 not enough memory to store returned data:

rmt rpc_init context handle failed, RpcStatus is

rmt rpc_send receive2 failed, RpcStatus is

rmt rpc_send receive2: not enough memory to store received data:
rmt rpc_send receive2 call failed, RpcStatus is

rmt rpc_send receive3 failed, RpcStatus is

rmt rpc_send receive3: not enough memory to store received data:
rmt rpc_send receive3 call failed, RpcStatus is

rmt rpc_disconnect from_server exit

3 versions of rpc_send _receive_server*()
Older versions still present

Regular breaks on rpc_send receive _server3()

Call stack shows one previous call in the module
| called it my_rpc_message _handler()
Deeper frames are from RPCRT4: built-in Windows RPC

my_rpc_message_handler()
Called from RPCRT4

Single argument, correctly identified as RPC_MESSAGE*
by IDA
Windows RPC is merely a transport layer

Internal structure: "The RPC_MESSAGE structure contains
information shared between NDR and the rest of the RPC or OLE
runtime.”

Basic sanity check

rpc_message->Buffer passed as argument to
rpc_send receive server3()

PythonForWindows

Endpoint: PRRemote:<AVP PID>

Interface:
806411e0-2ed2-194F-bb8c-e27194948acl

Method: 4
What are the others for?

client = windows.rpc.RPCClient(r"\RPC Control\PRRemote:%d" % int(avp pid))
iid = client.bind("806411e0-2ed2-194f-bb8c-e27194948acl")

ndr_params = ndr.make_parameters([ndr.NdrLong]*len(pkt))

resp = client.call(iid, 4, ndr_params.pack(pkt))

https://github.com/hakril/PythonForWindows

MESSAGE BUFFER 00000000 00P0POO 0PV 0BV s
01013200 SMALLINT N

Recognizable header j._]_
Readable strings =
UTF-16 T
rpc_send_receive_server3() [> my_rpc_header_size check() LT
Top-level message dispatcher len_in: WORD @ 0x12 ‘j
Interesting strings: len out: DWORD @ Ox14 =
"rmt\tReceived message has wrong) _ S
integrity code" len_in + len_out < rpc_msg->Size =

"rmt\tNo session found for ID" LangSec ppl love this ;) RN

struct KASPY_ IPC_REVERSED {

DWORD
DWORD
DWORD
DWORD
WORD

WORD

DWORD

fr

zeroo@
zero4
zero8
zeroC
doubleOne
len_out

len_in

Trace with x64dbg and Lighthouse

Debug: "No session found for ID"

Need a correct 64-bit value for parsing to happen
QWORD @ 0x18
You don’t brute-force 64-bits, even locally

Except on first connect
SID=0
Authorization2() runs

In practice:

sess0 = OXFFFA783B (slowly grows on service
respawn)

sess1 < 0x10000 (random DWORD on respawn)
Brute-force is totally practical!
Lack of boot-time entropy?

struct KASPY_ IPC_REVERSED {

DWORD
DWORD
DWORD
DWORD
WORD

WORD

DWORD
DWORD
DWORD

}s

zeroo@
zero4d
zero8
zeroC
doubleOne
len_out
len_in
session@

sessionl

https://gist.github.com/v-p-b/238d2e3bfa6671904f7e416e8a8ca562

Debug: "Received message has wrong integrity code”

Based on Flower-Noll-Vo (FNV) hash
Widely used algorithm, e.g. in spam filters

Not a cryptographic hash
FNV offset basis constant is present
Modified version, but primitives can be identified

Created standalone implementation with ripr
Static code from Binary Ninja + Unicorn Engine

64-bits random looking prefix makes thisa MAC ®

Set by the client in payload upon first connect (SID=0,
key=0)

struct KASPY_IPC_REVERSED {

DWORD
DWORD
DWORD
DWORD
WORD

WORD

DWORD
DWORD
DWORD
WORD

DWORD
DWORD

};

zero@
zero4
zero8
zeroC
doubleOne
len_out
len_in
session@
sessionl
unk
hasho
hash1l

http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-source
https://github.com/pbiernat/ripr

silent

signal

1 struct KASPY_IPC_REVERSED
0x101 -> protocol version IPC_ {
. . DWORD zeroo
» Header parser behavior depends on this value o i s
Set wversion+header length in one instr.
y OXlOO N OXlOl MoV dword ptr | + msg.version],0x320101 DWORD zero8
1 MoV dword ptr | + msg.lenIn], DWORD zeroC
TI m eSta m p ff CALL set_kaspy session WORD c
LEA =>systemtime, [Oxfffffedd +] HiEronl
Length == (0x32 PUSH WORD len_out
CALL dword ptr [GetSystemTimeAsFileTime] DWORD]_en_j_n
PUSH dword ptr [systemtime.dwHighDateTime + EEF] DWORD session@
LEA =>nsq, [EBP + -0x60] DWORD sessionl
PLISH dword ptr [systemtime.dwLowDateTime +] WORD e
ff CALL set _msgtime DWORD hasho
vold _ thiscall set_msgtime (kaspy_msg_obj *this,dword time_low,dword time_high) DWORD hashi
{ .
if (0x100 = this-=version) { Db ElICE
this-=systime_low = time_Tow; DWORD timel
this-=systime_high = time_high;
} }s
return;
}

Four DIVORD's are needed to accept the message for
further parsing

2 DWORD's as "session"

2 DWORD's as "integrity key"

Current IDs/keys are stored in global structures in both
the high priv. (avp.exe) and low priv. (avpui.exe)
processes

With self-defense bypass the secrets can be obtained

Other options:
—Bruteforee

Pre-auth messages
m

BUGS

Remember that length check?

It goes like this:

my _rpc_header_size check() MOVZX EDX,word ptr [ECX + ©x16] ; len_out
len_in: WORD @ 0Ox12 D MOV EAX,dword ptr [ECX + 0x18] ; len_in
len out: DWORD @ Ox14 DRI O

CMP dword ptr [EBP + size],EAX
len_in + len_out < rpc_msg->Size

Pre-auth integer overflow
| don't think it's exploitable (nor | am a pro exploit dev)
Still quite telling...

,Any fuzzer at all, no matter how primitive, has a
better chance of finding a bug than an idle CPU core.” — Ben Nagy

<20 LoC fuzzer in Python

Replay mutated packets captured at
rpc_send receive server3()

Patched out session/integrity checks with debugger
Pre+post auth crashes in minutes

F3 A4
8B 44 24 0OC

SE
SF
C3

repe movshb

mov eax,dword ptr ss:jfesp+C
pop es51
pop edi
Fet
EAX 1A6CDE 22
EBX 07 I505 04
ECX 13370000
ELVE 13370000
EEP 017 FFOG4
ESP 017FEFESE
ESL 7350522 wmmm) Attacker controlled

017FFO1C

CONTROLLED MEMCPY

The memcpy() in use wasn't identified as a library
function

memcpy() doesn't open a stack frame

Caller has stack canary
Leak through arbitrary sized FNV preimage?

Destination is a stack array right before the canary

Can we do anything interesting with full control over the
array?

1001aa76 - caseD o

w3376
w pa??
e
w.@a’h
o EETE
= @adl

switchD_ 1001aa6f:: ..
PUSH ED
CALL EZ
Wow EDW, ER
ADD ESF, Gxd

WO¥ dword ptr [EEF + local_58 L.,

JWP switchD_1001laasf: : casel_a

1001aa86 - caseD_2 |-
switchD 1801laa6f: : ...
3386 PUSH dword ptr [EEF + caller pa...
--.aad9 PUSH ED
> |..aaBa CALL E!
--.@aBc MOY EDXY, EA
..3afe ADD ESF, OxB
-.aa%l MOY dword ptr [EEF + local 58 1.

.-t

Switch

JMP switchD_1001laa6f: :casel_a

1001aa99 - caseD_3 .

@399
e EESC
e | 3RS
N EEL]
N EER
N EETE
- @3AT
-]

switchD_ 1001laacf:: ..

PUSH dword ptr [EEF + caller_pa ...
PUSH dword ptr [EEF + caller_pa ...

PUSH ED
CALL EX

WOV EDN, EX
BDD ESP, Oxc

WOY dword ptr [EEF + local 58 L.,

JMP switchD_100laabf: :casel_a

1001aaaf - caseD_4 i

o a@af
waah2
...aahs
—® ...aab8
...aah9
ansmmhh

switchD_1801aabf: : ..

PUSH dword ptr [EEF + caller_pa ...
PUSH dword ptr [EEF + caller_pa ...
PUSH dword ptr [EEF + caller_pa ...

PUSH ED
CALL EZ
MOY ___ENY ER

call_my buffer:
switch((int) ({int)stack - (int)&caller_ vtable) == 2) {
case 1:
local 5B
break;
case 2.
local 58
break;
case 3:
local S8
break;
case 4.
local 58 = (*(code *)func addr)
(caller_vtable,caller_params[@].caller_params[l],caller_params[2]);

(*(code *)func_addr)(caller vtable};

(*(code *)func_addr){caller_vtable,caller_params[0]);

(*(code *)func_addr)(caller vtable,caller params[0],caller _params[1]);

breal:

case o
loral B2 — (kf{rnde *kYfume adde)

We areinthe old rpc_send_receive_server() now!
Called from rpc_send_receive_server3()
So much for "radical redesign”...

func_addr ischosen from different function pointer
tables

User chooses the table

User chooses the offset
Offset is bounds checked

Typical function in the table:

void f(int param_1,int param_2,int param_3,int param_4,int param_5,int param_6,int param_7)

{
if (param_2 == -0xf000) {
(**(code **)(*(int *)DWORD_100739a0 + 0x14)) (oxffff1000,param 3,param 5);
return;
}

(**(code **)(*(int *)(param_1 + 4) + 0x124))
(param_1,param_2,param_3,param_4,param_5,param_6,param_7,0xffffffff);
return;

¥

Can we control param1?

Unlikely: Not presentin the input stream
First parameter is stored early in EDX in rpc_send_receive_server()
Our memcpy() doesn't affect is
Neither does any subsequent memory corruption

undefined4 _ cdecl call param2(undefined4 param_1,int param_2)

{
int ivarl;
iVarl = (**(code **)(*(int *)(DWORD_10077ad4 + 4) + 0x58))(DWORD_10077ad4,param 2);
if (-1 < ivarl) {
(**(code **)(*(int *)(param_2 + 4) + 0x5c))(param_2);

¥

return 0;

Are we happy, Vincent?

EXPLOITATION

THE GOOD THE BAD

We are local... Stack canaries
ASLR ineffective Thanks Tavis...
Arbitrary computation DEP

(dynamic shellcode, ROP, etc.)

AVP respawns Losing session+keys at respawn

Heap entropy still exists
Randomizing things before it was cool...

Pokemon exception handling

https://bugs.chromium.org/p/project-zero/issues/detail?id=518#c1

4th WORD after header holds flags

Needs proper setting to reach the table based call
Next DWORD is the table offset

What on Earth is this?

undefined4 _ cdecl call param2(undefined4 param_1,int param_2)

{
int ivVaril;
ivVarl = (**(code **)(*(int *)(DWORD_10077ad4 + 4) + 0x58))(DWORD_10077ad4,param_2);
if (-1 < ivarl) {
(**(code **)(*(int *)(param_2 + 4) + 0x5c))(param_2);
}

return 0;

¥

Looks like a method call on a global object

Implementation in PRCORE.DLL

The real deal is reached after multiple calls
my_struct_checker()

undefined4 _ cdecl call param2(undefined4 param_1,int param_2)
{
int ivVaril;
ivVarl = (**(code **)(*(int *)(DWORD_10077ad4 + 4) + 0x58))(DWORD_10077ad4,param_2);
if (-1 < ivarl) {
(**(code **)(*(int *)(param_2 + 4) + 0x5c))(param_2);
}

return 0;

uint my struct _checker(int ptr,dword char_out)

{
uint ptril;

ptrl = -(uint)(ptr != @) & ptr - 0x4cU;
if ((ptrl != 0) & & ((char)char_out !=0)) {
char_out = 0;
(*_ptr_check paraml)(ptrl + 0x54, &char_out,4,0);
if ((char_out == @) || (char_out != ptrl + 0x58)) {
ptrl = 0;

}
}

return ptril;

}

int my check _paraml(byte *ptr, byte *char_out, int ctr4)
{

int ivarl;

int *in_FS_OFFSET,;

undefined local 14 [16];

iVarl = *in_FS_OFFSET;
*(undefined **)in_FS _OFFSET = local 14;
while (ctr4 != 0) {
*char_out = *ptr;
ctr4 ctrd + -1;
char_out = char_out + 1;
ptr = ptr + 1;
}
*in_FS_OFFSET = iVarl;
return 0;

| used dynamic analysis + VM snapshots to keep
heap addresses constant
If it works, it's not stupid!

These functions get hit all the time
Must single-step from rpc_send_receive_server()

Struct checker performs basic sanity checks

Param2 has to survive multiple dereferences
Provide self-referencing pointers

Sent 20K packages with self-referencing pointers,
then the trigger packet

Still based on predictable heap addresses + VM snapshots
Checks passed -> EIP overwritten \o/

EIP value read from an address after the checked
struct values -> Possible to control!

How?

WE NEED TO SPRAY THE HEAP!

Tests showed that packet sizes are limited (~2K)
Parsed buffers are freed bymy rpc_msg handler()

Hooked HeapAlloc in IAT via KD
Terribly slow...
Physical page offsets?

Patched PythonForWindows so it won't check sizes or
wait for replies

Managed to spray my packets over a 78K, non-continuous
space:P

Let's read up again on this ALPC thingy...

ALPC Heap-Spray

Alex lonescu already did it!

(duht!)

http://www.alex-ionescu.com/publications/syscan/syscan2014.pdf

ALPC HEAP SPRAY STRATEGY

ALPC allows passing large messages Allocate 256M memory in our process

via shared memory Use the ALPC layer directly to send

D e RPC message
Unmapped after use (RPCRT4), PythonForWindows has example code
but can be arbitrary large! Share the 256M mapping
Virtual base addresses will differ Brute-force base address in avp.exe
between client and server Read access violations are handled :D

Offset inside allocation is known 2-3 tries in practice

256M

1

Trigger

rg=-—==—===<1

SELFPTR SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR SELFPTR

Oxdeadbeef

Nvdeadbecf

Oxdeadbeef
Oxdeadbeef

Oxdeadbeef
e
Oxdeadbeef
Oxdeadbeef

Oxdeadbeef
e e
Oxdeadbeef
Oxdeadbeef

Landing zone

Oxdeadbeef
Oxdaadbeef
Oxdeadbeef
Oxdeadbeef

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

SELFPTR

ROP2: ESP += 0x18

SELFPTR SELFPTR SELFPTR SELFPTR

ROP2 SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR SELFPTR

ROP1: ESP<-ESI (+POPs); RET 10

SELFPTR SELFPTR SELFPTR SELFPTR
ROP2 SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR ROP3

WinExec

ROP1: ESP<-ESI (+POPs); RET 10

ROP2: ESP += 0x18
ROP3: POP EBX

ROP2: ESP += 0x18
ROP3: POP EBX
ROP4: POP EDI

SELFPTR SELFPTR SELFPTR SELFPTR
ROP2 SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR SELFPTR

SELFPTR SELFPTR SELFPTR ROP3

WinExec

ROP1: ESP<-ESI (+POPs); RET 10

ROP4

Command

Command is sprayed at every 0x10000

ROP2: ESP += 0x18
ROP3: POP EBX
ROP4: POP EDI

ROP5: PUSH EBX; CALL EDI

SELFPTR SELFPTR SELFPTR SELFPTR
ROP2 SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR SELFPTR
SELFPTR SELFPTR SELFPTR ROP3
WinExec ROP4 Command ROP5

ROP1: ESP<-ESI (+POPs); RET 10

Command is sprayed at every 0x10000

DEMO

OUTRO

If these are your priorities...

If these are your priorities...

freegifmaker.me

silent
signal

If these are your priorities...

freegifmaker.me

~A Symatec

silent

signal

If these are your priorities... Q) FIREEYE Solutions Services partners Support Resources Comy

Home Company FireEye Awards SAFETY Act Certification - Cyber Attack Liability ...

SAFETY Act Certification

Liability protection for events related to acts of cyber terrorism

Both the FireEye Multi-Vector Virtual Execution (MVX) Engine and Cloud Platform are the first and only true cyber
' N security technologies to receive the federal SAFETY Act "Certified” designation from the Department of Homeland

£l | Security (DHS).

W aYa — L

| E— What SAFETY Act Certification Does

S N

The SAFETY Act is a 2002 federal law that created a liabilitv manacgement oroaram for oroviders of anti-terrorism

“NIf the DHS deems a particular cyber attack to be an act of terrorism, it may trigger the SAFETY Act. In those cases,
S
itpelFireEye, its customers, and all other entities in its supply chain cannot be sued by third parties for buying or using the

f thg

cdMVX Engine or Cloud Platform, even if product failure is alleged.

MVX Engine or Cloud Platform, even if product failure is alleged

Certification provides a strong defense, up to and potentially including dismissal of third party claims.

freegifmaker.me

VASymantec

silent

signal

If these are your priorities... Q) FIREEYE Solutions Services partners Support Resources Comy

Home Company FireEye Awards SAFETY Act Certification - Cyber Attack Liability ...

SAFETY Act Certification

Liability protection for events related to acts of cyber terrorism

Both the FireEye Multi-Vector Virtual Execution (MVX) Engine and Cloud Platform are the first and only true cyber
' N security technologies to receive the federal SAFETY Act "Certified” designation from the Department of Homeland

£l | Security (DHS).

W aYa — L

| E— What SAFETY Act Certification Does

S N

The SAFETY Act is a 2002 federal law that created a liabilitv manacgement oroaram for oroviders of anti-terrorism

“NIf the DHS deems a particular cyber attack to be an act of terrorism, it may trigger the SAFETY Act. In those cases,
S
itpelFireEye, its customers, and all other entities in its supply chain cannot be sued by third parties for buying or using the

f thg

cdMVX Engine or Cloud Platform, even if product failure is alleged.

MVX Engine or Cloud Platform, even if product failure is alleged

Certification provides a strong defense, up to and potentially including dismissal of third party claims.

freegifmaker.me

... you are not a charitable organization.

VASymantec

silent

signal

Scope of program:

Research value > Bounty value

Unrealistic scoping doesn't

RCE in produckt

encourage resea rchers high privilege
Client-side exploits? e
. Other RCE in
Dependencies? product
Limited impact cection
LOca l Sensikive® user

data disclosure

Needs self-defense bypass
PoC to be released a bit later

T (no direct

access to host, i.e.
behind nat)

45 000" — 420 0002

£2 000" - $10 0003

£2 000" - $10 0007

LAN (network access to
host in the same
broadcast domain)

45 000" - 410 000°

42 000" - 5 000®

£2 000" - £5 D00®

local vector (direct access to
host operating system with user
privileges)

£1 000" - 45 0007

£500" - 52 0007

Based on our product’s threat model, attacks on the communication channel within remoke management
services (configuration, update, etc.) can be implemented on any target system regardless of user ackivity.

Thus, by using a man in the middle attack, arbitrary code can be remotely executed in high privilege &Y

processes. As a resulk, malware code will work as part of AV product and bypass detection technologies. We

take this possibility very seriously.
A special bounty of $100,000 will be awarded For high-quality report with PoC that implements this

attack vector.

https://twitter.com/taviso/status/971109426500268032

RESULTS TIPS

Self-defence does hide exploitable This is just the tip of the iceberg
attack surface Other parses
Self-defense bypasses are useful Other vendors!
Attack from two ends Neat ideas in other IPC research
Look into persistence, code injection (browsers)
techniques Gamozolabs, Ned Williamson+NiklasB,
Kaspersky IPC parsers are fragile S
Local exploits are easy, despite Fuzzing is a metal detector
mitigations Interesting code > Unexploitable bugs

https://github.com/gamozolabs/adventures_in_fuzzing
https://www.youtube.com/watch?v=xzG0pLM4Q64
https://www.youtube.com/watch?v=MMxtKq8UgwE

BALINT VARGA-PERKE
BUHERATOR@SILENTSIGNAL.HU

° @buherator

° @SilentSignalHU

